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Abstract-This paper presents an analysis of the equations governing the dynamics of shear­
deformable composite plates. without recourse to a variational procedure. It is noted that the
operator associated with the governing equations is nonsymmetric; using a first-order perturbation
technique, it is shown to be positive-definite. In addition. using the biorthogonality condition. the
dynamic response of the plate is formulated.

I. INTRODUCTION

Substantiation of shear-deformation theories of composite plates and shells has been the
object of increasing attention during the last years. A review of composite structures is
given by Bert and Francis (1974), and a critical review of transverse shear-deformable plate
theories by Librescu and Reddy (1987).

In this paper we will refer to the basic approaches, namely, (i) a higher-order shear
deformation theory (HSDT), derived on the basis of representation of the displacement
field as per eqn (I), without recourse to a variational principle (Librescu, 1968; Librescu
and Reddy, 1987), .tnd (ii) theories derived through a variational principle and based on
the above representation (Reddy and Phan, 1985), or on a linear representation (FSDT) of
the displacement field through the plate thickness (Yang e/ ul., 1965; Whitney and Pagano,
1970). These two basic theories will be reli:rred to later as A and B, respectively.

Although the matrix associated with A is not self-adjoint, it is expected, considering
the conservative character of the problem, to be positive-definite, and will be shown to be
so using a first-order perturbation technique.

In the numerical examples, the response of a rectangular cross-ply laminated plate
excited by a stationary random load is considered, and the results are compared with their
counterparts in B.

2. REFINED HIGHER-ORDER THEORY

In the subsequent analysis, the distribution of the displacement field across the plate
thickness is considered as in Cederbaum el al. (1987) :

4
VI = =r{J. - 3h 2 =\r{J.• + w,.<)

4
V 2 = =r{Jv - 3h 2 =J(r{Jy + w,y)

V J = W
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where [,"1. Uz and U J are the components of the 3D displacement vector in the x-, y- and
z-directions. respectively: "', and"'. denote the rotation of the normals to the mid-plane
about the y- and x-axes, respectively, while ( ).} denotes the partial derivative with respect
to the indicated coordinate.

The above representation of the displacement field yields a parabolic distribution of
transverse shear strains across the plate thickness and the condition of zero in-plane loads
on the bounding planes of the plate (see Fig. 1). By this means, the need to introduce a
transverse shear correction factor, as in the case of FSDT, is obviated.

For an orthotropic material. in which the elastic axes of the layer coincide with the
geometrical ones, the pertinent constitutive equations may be expressed as

0"1 QII QIZ 1 f: I R II

O"z QIZ Q" 0 £: R: z

O"J QJJ £J +0", 0
I

0", 0 Qjj

Q6J

l:j 0

0", f: 6 0

where

(2)

\'I:E:
Q I: = n : n == I - 1'1: \': I

QJJ = 0:.,: Q" = (j1.1: 0 66 = (II:

and

HI I'.II+I':II'IZ

H, n

are the reduced elastic constants.
The distribution of the transverse normal stress, 0"" can be obtained by integration

across the segment [0, =), of the equation of motion of the 3D elasticity theory, wrilten in
the absence of body forces as

(Jd.,=pOj i=I,2.3

where p is mass density and the dots denote the time derivatives. This yields

y

(3)

f

x

Fig. I. Geometry and coordinate system for a rectangular plate.
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The stress resultants L,j and stress couples L d • (i, j = 1. 2), involved in the bending
equations of motion of plate theory are defined as

(5)

where N denotes the total number of layers.
The equations of motion necessary for solution of this problem as expressed in terms

of the 2D quantities in eqn (5). are

L1j,j-L 11 = II

L~i.I-L~1 = I~ i,j = 1,2

Ln., + PI = II (6)

where PI denotes the transverse external load, while

and

f
h.2

/1 = p=O\ d=
. hi 1

arc the rotatory and transversal inertia terms, respectively.
Equations (6) may be obtained through integration of the equations of motion of the

3D elasticity theory across the plate thickness. Finally, the governing equations associated
with bending theory are obtained by expressing the stress resultants and stress couples in
egns (6) in terms of the unknowns 1/1" t/I. and W. Using in addition the proportional
damping model (C being the damping factor). the governing equations read:



5IS

with the rigidities .\Od inerti'l terms defmed as:

f"1

(A'l' DII' F,,) = "Q" ( I. =1,::::~) d=
It' ,

(A", Dr, ) ;; J
0It

'1 Q,j ( 1.::::1) d:­
It ~

f
;,'~- , ,

1.\, = " pR,,::::- d:
h .2

J. DYNAMIC RESPO;-";SE

(i, j = I, 2, 6)

(i, j = 4,5)

(i = L 2).

(~)

Equations (7) wnstitule a set of partial differential t:quatiol1s of the sIxlh order. For
the case of a simply-supported rectangular pand (a x h), the houndary conditions read

H''''''!/J.=L11=O alx"",O.a

1V== ,/I. = L 11 0 aty = O,n.

The solution functions arc then represented in a form that s'ltislles exactly the boundary
conditions

"',-If

!/f,(X, y. I) = L f",,, sin :xx cos fly T"",(I) E L r",,, T,,,,,
m,f!

(9)
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where ~ = mrr!a; P= f/nlb; Xm,,, Y_. Wm~ are the coefficients of the natural mode shapes
associated with the free vibration problem while Tm~(t) denote the generalized coordinates.
The transverse loading function is given by

(10)
m.n

where q_ are the Fourier coefficients. For the free vibration problem F",.(t) == O. C == 0 and
T_(t) = elW

_
t (i = J -I); using (9) in the governing equations (7). we obtain the eigenvalue

problem in the form

where

[[K] -, ~ ["f]] fA'. - .rOl.mn (''J",n.&'- lLljmn - l , (II)

Both ["1 and [M] are real and nonsymmetric matrices. and since [M] is also non­
singular. we can multiply eqn (II) by [M]- I from the left to obtain for each mn

( 12)

and hy writing [A] = [AI] - I[K]. the eigenvalue problem is obtained in the form

(13)

where [AI is likewise real and nonsymmetric.
Consider now the eigenvalue problem associated with the adjoint operator [A] r. Its

eigenvalues (.rj1 are the same as those of [A]. so we can write

( 14)

For this case the biorthogonality condition (Meirovitch, 1980) is applied

( 15)

where the barred quantities are associated with the eigenvalue problem of [A r.
Using the modal analysis lechnique, the decoupled differential equation for T",.(t) is

.. . , I
7~,.(t) + CTn,.(t) +w,;,. T",~(t) = J--- Fmn(t)

"'~

where

( 16)

C = 2~m.wnrn

while J",~ stands for the norm (generalized mass), defined as

m = p.n = q

otherwise

where
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Under homogeneous initial conditions. the solution of eqn (16) is

I"
Tmn(t) = J~-- J F",n(r)h",n(t-r)dr

mit II

(17)

( 18)

then with eqn (9), and following Elishakolf (1983). the transverse displacement is expressed
as

1 I'W(x.l'.t):=)" l':nn(r)h",n(t-r)dr
. ;; 1mn f

when:

( 19)

I J"F..,. (w) = .,
_IT ,

F"u,(!)t' ",,' dt

while Il",,,(w) is the complex fre4uency response function associated with the mil mode,

4. R:\~DOM VIBR:\TIO~ r\~:\L YSIS

For stationary excitation with zero mean, the cross-correlation of the transverse dis­
placement function is expressed as

RII(x I' .I' I, x", .1'> r) = I I W",n(X I' .1'1) Wpq(X", .1'")f"S(l~.fJ)(JJ) ll,,,n (w)1l :'/(w je"'" dUJ
"',n P,I'

(20)

where

while
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denotes the cross-spectral density function of the applied load.
If the plate is driven by a point load at (.i. J'). random in time. and characterized by

an ideal white-noise correlation function. we have

and

11l1t . mt . p1t . q1t Jd d
sin-xtsm-b Ytsm-x~sm-byz A~ At

a a

I . rmt _ . me _ . p1t _ . q1t_
= ---So SIO -XSIO -- rsm - XSIO ._- V

}mn}"q {l b . a b .
(24)

where So = R/21t and dA; =dx, dy,. (I = I. 2).
For the case where the 10,11.1 is applied at the center of the plate. i.e. .i = a/2: .v = h/2.

we have

m,f1.p,q = 1,3, 5 . . . (25)

and the meun-square of the displacement function at the driven point is

(ab(l b ) (a b) (a b) f'X. SQ...Q....(w)
Rw :;, l' ;;".0 = L L Wmn :;', Wpq '2-'::;- . L ( )L* ( ) dw.

_ _ _ _ m.n p.1{ - - - - ,;e, mn ill P'i ill
(26)

The natural frequencies were found to be well separated (Cederbaum et al.• 1987) and
for the case of light damping, the autocorrelation terms only are taken into account, so
that

(27)

5. FIRST·ORDER PERTURBATION OF THE EIGENVALUE PROBLEM

Let A" be n x fI real matrix, whose eigenvalues ..1.,,1 i = I, 2, ... , n are distinct and whose
right and Icft eigenvectors {A,,} and {Aa }. respectively, are normalized to satisfy

(28)

Consider also the n x n matrix <5A". representing a small variation of A". whose eigenvalues
and eigenvectors are (5)."i and {('A,,}; {c5A,,},. respectively.
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For the perturbed matrix A. defined as

A = A,,+J.{, (29)

the assumption of a first order perturbation implies

(30)

which enables us to determine J~",. {J~"L and {J~,,:, from the already known A". JA". ;'''i'
{~"L and (~,,},. This leads to the following expressions. Meirovitch (1980):

i. k = 1.2•.... 1t: i #- k

(31 )

For the case where A" is symmetric. so that {~"L = {~":'" and (),.I" is real. we obtain

which is a rcallllltl1bcr. and

which implies that ;., is a real number as well. and

(34)

From egn (34) we conclude that although the perturbed matrix A might be non­
symmetric. its right and left eigenvectors coincide within the first order perturbation. and
the norm associated with A may be computed by the right eigenvectors only.

Next. we would like to show that for the case where JA" is nonsymmetrie. A. although
not self-adjoint. may be positive-definite. For this purpose we use the following theorem.
based on the fact that the eigenvalues of A depend continuously on its coeflicienls (Franklin.
1969):

"Let/l 1 ••• /lJ be the dilferent eigenvalues ofan fl x 11 matrix A = (a'I)' Let the eigenvalue
III have multiplicity mi' where Em) = n. Then. for all suflicient small I; > 0 there is a number
}' = ,(I:) > 0 such that if Ih'l-a,/1 ~ 'I for i. j = I. 2•. , .• f! then the matrix 8 = (h,) has
exactly nljcigenvalues in the circle 1;.-11/1 < I: for each j = I. 2.... . s."

This theorem implies. for our case. that once ;',,1 (the smallest eigenvalue of A.,) is
sufliciently positive (removed from zero). and JA" sutliciently small. then. even if all the
eigenvalues of the perturbation matrix. J;...,. are negative (they were shown to be real)
those of A. ;.,. arc positive. allowing us to conclude th'lt A is positive-definite.

We now would like to apply the prcvious HSDT derivation of the non self-adjoint
system for determination of its eigenvalues and eigenvectors. To this end. let A" be the
matrix obtained by the other HSDT version. (category 8) and A its counterpart obtained
by the present HSDT version. All that has to be shown is that bA" is small compared with
A,.. This will be illustrated in the following numerical example.

Consider a rectangular. symmetric. cross-ply laminate. composed of four layers (0 .
90'. 90 '. 0') of equal thickness. The material of each layer. consisting of a woven graphite
fabric and carbon matrix. has the following engineering constants. given by Pagano and
Soni (1986)
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£, = 25.1 MSI Gil = 1.36MSI VI! = 0.031

£!=4.8MSI G 1J =I.2MSI vl.l=O.25 and p=0.075PCI.

£.I=0.75MSI G!)=0.47MSr v!)=0.171

Note: The displacement field ofeqn (I) is also used in the HSDT (B) version, where
the right and left eigenvectors coincide, and the norm is:

(35)

Table I shows the A, A", c5A" and c5AJA" matrices, for the first mode, with a = h = 10 h.
rn general, A differs from A" by less than 10%, which is of the same order as in the example
of Ryland and Meirovitch (1980). (The ditTerence is even smaller for a/II> 10.) Figure 2

Tablc I. Matriccs A ("SOT (A ». An ("SDT(R». J.-I. and JA.IA. for m. 11 = I. I and <I!" = 10.

A. A

0.56IE+11 0.656E+ 10 O.II:!E+11 0.566E+ II 0,75JE+ 10 0.105E+ (I
0.895E+ 13 OA33E+ 13 0.862E+ II 0.102E+14 0.478E+ 13 0.793E+ II
0.165E+ 14 0.8:!7E+ II 0,584E+ 13 0.145E+ 14 0.739E+ II 0.547E+ 13

JA. = A-An JAjA n

0.50IE+09 0.966E+09 -0,75IE+09 O.893E-O:! O.147E+OO 0.669E-OI
0.123E+ 13 O,448E+ 12 -O.684E+ 10 O.138E+OO O.I03E+OO O.794E-01
O,IIIE+ 13 O,88IE+ 10 -0.365E+ 12 O.67IE-01 0,107E+OO 0,626E-01

~'5 ~S:~-F
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displays the normalized fundamental frequem;ies for various II/h ratios, computed via the
first order shear deformation theory, via IISDT (1J), and via IISDT (A). All three curves
tend asymptotically to the CPT line. drawing closer togdher as II Ir increases. It can also
he seen that the curve associated with A is hordered hy the two curves assOI.:iated with IJ.

Figure .\ shows the variation of .f". normalized to ~ji, for FSDT, IISDT (IJ) and the right
and left of HSDT (A). It can he seen that the right codlicient of IISDT (..1) is dose to
HSDT (In while the left one is closer to FSDT. Figure 4 shows the variation of }"', where
the curves due to .111 theories practically coincide. Since shear-deformation theories an:
dlicient at low r•• tio of a/h, the dilrcrence between them is dearly seen there.

The mean-square transverse displacement for the ahove random vibration prohlem via
the various theories, normalized to those ohtained via CPT, is shown in Fig. 5. Also included
in this figure arc the approximate results obtained by HSDT (A) by using the right
eigenvector only. It can be seen that all theories again tend together asymptotically to the

Or--------------------------,

HSDT tA-LEFTl

10 20
O/h

Fig. 4. Variation or f, Ii' vs lJ;iI (first mode).

50
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Fig. 5. Norm.l1ilcd (to CPT) mcan-squarc transvcrsc displa<.:cment of the platc: c:c:ntcf vs a/h.

CPT line as the ratio a/It increases. and as in rigs 2 4. the mean-square via HSDT (11) IS

bordered oy those ohtail1l.:d via II.

6. COl\:CU ISION

The equations governing the dynamics of shear-deformable composite plates arc
analyzed. This high-order shear deformation theory results in a nonsymmetric operator.
Using tltc tirst-order perturbation techniquc, it is shown that the eigenvalucs arc real and
positive. which leads to the conclusion that the operator is positiveddinite. The dynamic
response of the laminated plate is then formulated using the biorthogonality condition. It
was found, that when the right cigcnvectors only arc used. the results arc very dose to those
ootained when using both the right and the left eigenvectors ones.

The above condusions could be extcnded to other pbte and shell theories belonging
to category A (Ambartsumyan. 1970; Reissncr, 1977; Levinson, 1980 and Morley, 1959).
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